GeoJSON draft version 5
Contents
Overview
GeoJSON is a data-interchange format for a variety of geographic data structures. GeoJSON can be used to represent a geometry, a feature, a collection of geometries, or a collection of features. The geometry types supported in GeoJSON are Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection, and Box. Features in GeoJSON are geometry objects with additional properties. A geometry collection represents a list of geometries and a feature collection represents a list of features.
A complete GeoJSON data structure is always an object (in JSON terms). In GeoJSON, an object consists of a collection of name/value pairs - also called members. For each member, the name is always a string. Member values are either a string, number, object, array or one of the literals: true, false, and null. An array consists of elements where each element is a value as described above.
Definitions
- JavaScript Object Notation (JSON), and the terms object, name, value, array, and number, are defined at http://json.org/
- The terms may, should, and must are defined at http://www.ietf.org/rfc/rfc2119.txt
Specification
- GeoJSON always consists of a single object. This object (referred to as the GeoJSON object below) represents a geometry, feature, collection of geometries, or collection of features.
- The GeoJSON object may have any number of members (name/value pairs).
- The GeoJSON object must have a member with the name "type". This member's value is a string that determines the type of the GeoJSON object.
- The value of the type member must be one of: "Point", "MultiPoint", "LineString", "MultiLineString", "Polygon", "MultiPolygon", "GeometryCollection", "Box", "Feature", or "FeatureCollection". "type" must be lower case, the case of the type member values must be as shown here.
- A geometry is a GeoJSON object where the type member's value is one of: "Point", "MultiPoint", "LineString", "MultiLineString", "Polygon", "MultiPolygon", "GeometryCollection", or "Box". The case of the type member values must be as shown here.
- In addition to the type member, any GeoJSON object that represents a single geometry (referred to as a geometry object below) must have a member with the name "coordinates". This does not apply to geometry objects of type "GeometryCollection". The value of the coordinates member is always an array (referred to as the coordinates array below). The structure for the elements in this array are determined by the type of geometry.
- For type "Point", each element in the coordinates array is a number representing the point coordinate in one dimension. The order of elements follows x, y, z order (or longitude, latitude, elevation for coordinates in decimal degrees).
- For type "MultiPoint", each element in the coordinates array is a coordinates array as described for type "Point".
- For type "LineString", each element in the coordinates array is a coordinates array as described for type "Point". The coordinates array for a LineString must have two or more elements. A LinearRing is a special case of type LineString where the first and last elements in the coordinates array are equivalent (they represent equivalent points). Though a LinearRing is not explicitly represented as a GeoJSON geometry type, it is referred to in the Polygon geometry type definition.
- For type "MultiLineString", each element in the coordinates array is a coordinates array as described for type "LineString".
- For type "Polygon", each element in the coordinates array is a coordinates array as described for type "LineString". Furthermore, each LineString in the coordinates array must be a LinearRing. For Polygons with multiple LinearRings, the first must be the exterior ring and any others must be interior rings or holes.
- For type "MultiPolygon", each element in the coordinates array is a coordinates array as described for type "Polygon".
- For type "Box", the coordinates array must have two elements. Each element in the coordinates array is a coordinates array as described for type "Point". The first element in the array represents the minx, miny corner of the box, and the second point represents the maxx, maxy corner of the box.
- A GeoJSON object with type "GeometryCollection" is a geometry object which represents a collection of geometry objects.
- An object of type "GeometryCollection" must have a member with the name "geometries". The value corresponding to "geometries" is an array. Each element in this array is a geometry object as defined above.
- In addition to the type member, any GeoJSON object that represents a single geometry (referred to as a geometry object below) must have a member with the name "coordinates". This does not apply to geometry objects of type "GeometryCollection". The value of the coordinates member is always an array (referred to as the coordinates array below). The structure for the elements in this array are determined by the type of geometry.
- A GeoJSON object with the type "Feature" represents a geometry with additional properties (referred to as a feature object below).
- A feature object must have a member with the name "geometry". The value of the geometry member is a geometry object as defined above or a JSON null value (as in
{"type":"Feature", "properties": {"title":"empty"}, "geometry":null}
). - A feature object must have a member with the name "properties". The value of the properties member is an object (any JSON object).
- A feature object must have a member with the name "geometry". The value of the geometry member is a geometry object as defined above or a JSON null value (as in
- A GeoJSON object with the type "FeatureCollection" represents a collection of feature objects.
- An object of type "FeatureCollection" must have a member with the name "features". The value corresponding to "features" is an array. Each element in the array is a feature object as defined above.
- A GeoJSON object without a member named "crs" contains geometries in a geographic coordinate reference system, using the WGS84 datum, and with units in decimal degrees. A GeoJSON object may have a member with the name "crs". If a GeoJSON object has a member named "crs", it is assumed to represent the coordinate reference system of the included geometry or geometries.
- The value of a member named "crs" must be an object. This object must have at least two named members: "type" and "properties". The value of the member named "type" must be a string. The value of the member named "properties" must be an object. This specification defines no further requirements for the structure of these objects. Instead, a convention is offered.
- To use EPSG codes to describe coordinate reference system, the "crs" member should have the following structure:
"crs": {"type": "EPSG", "properties": {"code": 2805}}
. "crs", "type", and "properties" must be lower case. When used as a value, "EPSG" must be upper case.- EPSG codes must not be used if 1) the EPSG-defined axes order of the crs is not lon, lat (for a geographic crs) or easting, northing (for a projected crs), or 2) the EPSG-defined coordinate representation of a geographic crs is not decimal degrees (e.g. if is degrees/minutes/seconds). Instead, such data should use OGC URNs that specify the ordering to be lon, lat (or easting, northing) and/or the coordinate representation to be decimal degrees.
- To use an OGC URN (http://portal.opengeospatial.org/files/?artifact_id=16339) as a unique identifier of a coordinate reference system, the "crs" member should have the following structure:
- The "type" member must be "OGC".
- The properties member must be an object with one member, "urn", that specifies an OGC URN such as "urn:ogc:def:crs:OGC:1.3:CRS84".
- The URN "urn:ogc:def:crs:OGC:1.3:CRS84" should be used in place of EPSG:4326 to indicate decimal degrees using the WGS84 datum in lon, lat order: the CRS object in this case would look like:
{"type":"OGC", "properties": {"urn":"urn:ogc:def:crs:OGC:1.3:CRS84"}}
- Unless your data falls under one of the exceptions above, you should prefer EPSG codes to OGC URNs.
- To use a URL as a unique identifier to a coordinate reference system, the "crs" member should have the following structure:
- The properties object should contain one member: "url", that specifies a URL for the spatial reference that can be dereferenced by the client.
- An optional member, "type", is recommended, specifying the type of information available at the URL. This may be any string: suggestions are "proj4", "ogcwkt", "esriwkt", though others can be used. Applications may use this "type" member to determine the type of information that is available at the URL.
- The specification does not offer any information on how to convert this URL into a spatial reference system: use is intended to provide users the ability to define their references outside the EPSG namespace *only*.
- To use EPSG codes to describe coordinate reference system, the "crs" member should have the following structure:
- The value of a member named "crs" must be an object. This object must have at least two named members: "type" and "properties". The value of the member named "type" must be a string. The value of the member named "properties" must be an object. This specification defines no further requirements for the structure of these objects. Instead, a convention is offered.
Examples
Each of the examples below represents a complete GeoJSON object. Note that unquoted whitespace is not significant in JSON. Whitespace is used in the examples to help illustrate the data structures - though it is not required.
Geometries
Point
Point coordinates are in x, y order (longitude, latitude for geographic coordinates).
{ "type": "Point", "coordinates": [100.0, 0.0] }
LineString
Coordinates of LineString are an array of Point coordinates.
{ "type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] }
Polygon
Coordinates of a Polygon are an array of LinearRing coordinates (LineString coordinates where the first and last points are equivalent). The first element in the array represents the exterior ring. Any subsequent elements represent interior rings (or holes).
No holes
{ "type": "Polygon", "coordinates": [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ] ] }
With holes
{ "type": "Polygon", "coordinates": [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ], [ [100.2, 0.2], [100.8, 0.2], [100.8, 0.8], [100.2, 0.8], [100.2, 0.2] ] ] }
MultiPoint
Coordinates of a MultiPoint are an array of Point coordinates.
{ "type": "MultiPoint", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] }
MultiLineString
Coordinates of a MultiLineString are an array of LineString coordinates.
{ "type": "MultiLineString", "coordinates": [ [ [100.0, 0.0], [101.0, 1.0] ], [ [102.0, 2.0], [103.0, 3.0] ] ] }
MultiPolygon
Coordinates of a MultiPolygon are an array of Polygon coordinates.
{ "type": "MultiPolygon", "coordinates": [ [ [ [102.0, 2.0], [103.0, 2.0], [103.0, 3.0], [102.0, 3.0], [102.0, 2.0] ] ], [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ], [ [100.2, 0.2], [100.8, 0.2], [100.8, 0.8], [100.2, 0.8], [100.2, 0.2] ] ] ] }
GeometryCollection
Each element in the geometries array of a GeometryCollection is one of the geometry objects described above.
{ "type": "GeometryCollection", "geometries": [ { "type": "Point", "coordinates": [100.0, 0.0] }, { "type": "LineString", "coordinates": [ [101.0, 0.0], [102.0, 1.0] ] } ] }
Box
Coordinates of a Box are an array of two Point coordinates. The first element in the array represents the minimum corner point (minx, miny). The second element in the array represents the maximum corner point (maxx, maxy).
{ "type": "Box", "coordinates": [[100.0, 0.0], [101.0, 1.0]] }
Feature
A Feature is an object with a geometry and additional properties.
{ "type": "Feature", "geometry": { "type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] }, "properties": { "prop0": "value0", "prop1": "value1" } }
Since a GeometryCollection is a geometry type, you can use one inside a Feature:
{ "type": "Feature", "geometry": { "type": "GeometryCollection", "geometries": [ { "type": "Point", "coordinates": [100.0, 0.0] }, { "type": "LineString", "coordinates": [ [101.0, 0.0], [102.0, 1.0] ] } ] }, "properties": { "prop0": "value0", "prop1": "value1" } }
FeatureCollection
Each element in the features array of a FeatureCollection is a Feature object as described above.
{ "type": "FeatureCollection", "features": [ { "type": "Feature", "id": "id0", "geometry": { "type": "LineString", "coordinates": [ [102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0] ] }, "properties": { "prop0": "value0", "prop1": "value1" } }, { "type": "Feature", "id": "id1", "geometry": { "type": "Polygon", "coordinates": [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ] ] }, "properties": { "prop0": "value0", "prop1": "value1" } } ] }
Same feature collection, with a member named "crs" to represent the coordinate reference system.
{ "type": "FeatureCollection", "crs": { "type": "URL", "properties": { "url": "http://spatialreference.org/ref/epsg/2001/proj4/", "type": "proj4" } }, "features": [ { "type": "Feature", "id": "id0", "geometry": { "type": "LineString", "coordinates": [ [102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0] ] }, "properties": { "prop0": "value0", "prop1": "value1" } }, { "type": "Feature", "id": "id1", "geometry": { "type": "Polygon", "coordinates": [ [ [100.0, 0.0], [101.0, 0.0], [101.0, 1.0], [100.0, 1.0], [100.0, 0.0] ] ] }, "properties": { "prop0": "value0", "prop1": "value1" } } ] }
Including additional members
GeoJSON allows additional members at any level in a GeoJSON object (as described in point 2 in the specification).
For example, if you are constructing a Feature type object, three members are required (named "type", "geometry", and "properties"). In addition to these three members, you may add any additional members. The example below adds a member named "foo" with the value "bar".
{ "type": "Feature", "geometry": { "type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] }, "properties": { "prop0": "value0", "prop1": "value1" }, "foo": "bar" }
If you are working with a data standard that uses namespaces, you can handle those by taking advantage of these extra members. For example, adding a member with the name "@namespaces" is valid in GeoJSON:
{ "@namespaces": {"":"http://geojson.org/ns#"}, "type": "Feature", "geometry": { "type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] }, "properties": { "prop0": "value0", "prop1": "value1" } }
Additionally, since all unicode characters are allowed in member names, the following object (with a member named "atom:summary" is valid GeoJSON).
{ "@namespaces": {"":"http://geojson.org/ns#", "atom":"http://www.w3.org/2005/Atom"}, "@type": "atom:item", "type": "Feature", "geometry": { "type": "LineString", "coordinates": [ [100.0, 0.0], [101.0, 1.0] ] }, "properties": { "atom:summary": "Some GeoJSON Content", "atom:description": "This content is also valid GeoJDIL." } }
Authors
- Tim Schaub
- Allan Doyle
- Martin Daly
- Christopher Schmidt
- Sean Gillies